Chilkat Examples

ChilkatHOME.NET Core C#Android™AutoItCC#C++Chilkat2-PythonCkPythonClassic ASPDataFlexDelphi ActiveXDelphi DLLGoJavaLianjaMono C#Node.jsObjective-CPHP ActiveXPHP ExtensionPerlPowerBuilderPowerShellPureBasicRubySQL ServerSwift 2Swift 3,4,5...TclUnicode CUnicode C++VB.NETVBScriptVisual Basic 6.0Visual FoxProXojo Plugin

Lianja Examples

Web API Categories

ASN.1
AWS KMS
AWS Misc
Amazon EC2
Amazon Glacier
Amazon S3
Amazon S3 (new)
Amazon SES
Amazon SNS
Amazon SQS
Async
Azure Cloud Storage
Azure Key Vault
Azure Service Bus
Azure Table Service
Base64
Bounced Email
Box
CAdES
CSR
CSV
Certificates
Code Signing
Compression
DKIM / DomainKey
DNS
DSA
Diffie-Hellman
Digital Signatures
Dropbox
Dynamics CRM
EBICS
ECC
Ed25519
Email Object
Encryption
FTP
FileAccess
Firebase
GMail REST API
GMail SMTP/IMAP/POP
Geolocation
Google APIs
Google Calendar
Google Cloud SQL
Google Cloud Storage
Google Drive
Google Photos
Google Sheets
Google Tasks
Gzip
HTML-to-XML/Text
HTTP

HTTP Misc
IMAP
JSON
JSON Web Encryption (JWE)
JSON Web Signatures (JWS)
JSON Web Token (JWT)
Java KeyStore (JKS)
MHT / HTML Email
MIME
MS Storage Providers
Microsoft Graph
Misc
NTLM
OAuth1
OAuth2
OIDC
Office365
OneDrive
OpenSSL
Outlook
Outlook Calendar
Outlook Contact
PDF Signatures
PEM
PFX/P12
PKCS11
POP3
PRNG
REST
REST Misc
RSA
SCP
SCard
SFTP
SMTP
SSH
SSH Key
SSH Tunnel
ScMinidriver
SharePoint
SharePoint Online
Signing in the Cloud
Socket/SSL/TLS
Spider
Stream
Tar Archive
ULID/UUID
Upload
WebSocket
XAdES
XML
XML Digital Signatures
XMP
Zip
curl

 

 

 

(Lianja) Duplicate PHP RSA Encryption

Demonstrates how to duplicate the following PHP function.

Chilkat Lianja Extension Download

Chilkat Lianja Extension

// This example requires the Chilkat API to have been previously unlocked.
// See Global Unlock Sample for sample code.

// Duplicate the following PHP code:
// 
//    public function encryptRSA($plainText,$rsaMOD,$pubKEY){
//         $rsa  = new RSA();
//         $rsa->setEncryptionMode(RSA::ENCRYPTION_PKCS1);
//         $publicKey = [
//             'e' => new BigInteger($pubKEY,16),
//             'n' => new BigInteger($rsaMOD,16)
//         ];
// 		
//         $rsa->loadKey($publicKey);
//         $ciphertext = $rsa->encrypt($plainText);
//         return bin2hex($ciphertext);
//     }
// 
//     $plainText="key=abcdefghijkmnopq&iv=abcdefghijkmnopq&h=12345678&s=12345678"
//     $rsaMOD="F0946D8F05604809E24B8CFFD30349CEA9E5F4D320BFD9E9AA1B088863F02C43E7997D37A3E27B4F8F359F1744DB6B20A437067C0D325A80660D12FF56A57673"
//     $pubKEY="010001"

// We have the RSA modulus in hex
lcRsaMOD = "F0946D8F05604809E24B8CFFD30349CEA9E5F4D320BFD9E9AA1B088863F02C43E7997D37A3E27B4F8F359F1744DB6B20A437067C0D325A80660D12FF56A57673"

// The RSA exponent in hex is "010001", which is 65537 in decimal.  It's typically the exponent that is always used.
lcRsaEXP = "010001"

// Get the RSA modulus and exponent in base64.
loBdMod = createobject("CkBinData")
loBdExp = createobject("CkBinData")
llSuccess = loBdMod.AppendEncoded(lcRsaMOD,"hex")
llSuccess = loBdExp.AppendEncoded(lcRsaEXP,"hex")

// Build the XML representation of the RSA public key
loXml = createobject("CkXml")
loXml.Tag = "RSAPublicKey"
loXml.UpdateChildContent("Modulus",loBdMod.GetEncoded("base64"))
loXml.UpdateChildContent("Exponent",loBdExp.GetEncoded("base64"))

// Load the RSA public key into a Chilkat public key object.
loPubkey = createobject("CkPublicKey")
llSuccess = loPubkey.LoadFromString(loXml.GetXml())

// Setup the RSA object for encryption and do it..
loRsa = createobject("CkRsa")
loRsa.VerboseLogging = .T.
llSuccess = loRsa.ImportPublicKeyObj(loPubkey)

// Use PKCSv1.5 padding
loRsa.OaepPadding = .F.

// Encrypt and return the string as hex.
loRsa.EncodingMode = "hex"
lcPlainText = "key=abcdefghijkmnopq&iv=abcdefghijkmnopq&h=12345678&s=12345678"
lcCipherText = loRsa.EncryptStringENC(lcPlainText,.F.)
if (loRsa.LastMethodSuccess = .F.) then
    ? loRsa.LastErrorText
    release loBdMod
    release loBdExp
    release loXml
    release loPubkey
    release loRsa
    return
endif

// Note: The PKCSv1_5 padding incorporates random bytes.  Therefore, the RSA encryption will produce different results each time -- all of which are valid 
// and decrypt correctly to the same original text.
? lcCipherText


release loBdMod
release loBdExp
release loXml
release loPubkey
release loRsa

 

© 2000-2024 Chilkat Software, Inc. All Rights Reserved.